163 research outputs found

    Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.

    Get PDF
    Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present

    Serologic features of cohorts with variable genetic risk for systemic lupus erythematosus

    Full text link
    Abstract Background Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic, hormonal, and environmental influences. In Western Europe and North America, individuals of West African descent have a 3–4 fold greater incidence of SLE than Caucasians. Paradoxically, West Africans in sub-Saharan Africa appear to have a low incidence of SLE, and some studies suggest a milder disease with less nephritis. In this study, we analyzed sera from African American female SLE patients and four other cohorts, one with SLE and others with varying degrees of risk for SLE in order to identify serologic factors that might correlate with risk of or protection against SLE. Methods Our cohorts included West African women with previous malaria infection assumed to be protected from development of SLE, clinically unaffected sisters of SLE patients with high risk of developing SLE, healthy African American women with intermediate risk, healthy Caucasian women with low risk of developing SLE, and women with a diagnosis of SLE. We developed a lupus risk index (LRI) based on titers of IgM and IgG anti-double stranded DNA antibodies and levels of C1q. Results The risk index was highest in SLE patients; second highest in unaffected sisters of SLE patients; third highest in healthy African-American women and lowest in healthy Caucasian women and malaria-exposed West African women. Conclusion This risk index may be useful in early interventions to prevent SLE. In addition, it suggests new therapeutic approaches for the treatment of SLE.https://deepblue.lib.umich.edu/bitstream/2027.42/143866/1/10020_2018_Article_19.pd

    CAD-RADS™ 2.0 - 2022 Coronary Artery Disease – Reporting and Data System an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America society of cardiovascular imaging (NASCI)

    Get PDF
    Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care

    A Connection between Colony Biomass and Death in Caribbean Reef-Building Corals

    Get PDF
    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels

    International collaborative study to assess cardiovascular risk and evaluate long-term health in cats with preclinical hypertrophic cardiomyopathy and apparently healthy cats:The REVEAL Study

    Get PDF
    Background: Hypertrophic cardiomyopathy is the most prevalent heart disorder in cats and principal cause of cardiovascular morbidity and mortality. Yet, the impact of preclinical disease is unresolved. Hypothesis/Objectives: Observational study to characterize cardiovascular morbidity and survival in cats with preclinical nonobstructive (HCM) and obstructive (HOCM) hypertrophic cardiomyopathy and in apparently healthy cats (AH). Animals: One thousand seven hundred and thirty client-owned cats (430 preclinical HCM; 578 preclinical HOCM; 722 AH). Methods: Retrospective multicenter, longitudinal, cohort study. Cats from 21 countries were followed through medical record review and owner or referring veterinarian interviews. Data were analyzed to compare long-term outcomes, incidence, and risk for congestive heart failure (CHF), arterial thromboembolism (ATE), and cardiovascular death. Results: During the study period, CHF, ATE, or both occurred in 30.5% and cardiovascular death in 27.9% of 1008 HCM/HOCM cats. Risk assessed at 1, 5, and 10 years after study entry was 7.0%/3.5%, 19.9%/9.7%, and 23.9%/11.3% for CHF/ATE, and 6.7%, 22.8%, and 28.3% for cardiovascular death, respectively. There were no statistically significant differences between HOCM compared with HCM for cardiovascular morbidity or mortality, time from diagnosis to development of morbidity, or cardiovascular survival. Cats that developed cardiovascular morbidity had short survival (mean \ub1 standard deviation, 1.3 \ub1 1.7 years). Overall, prolonged longevity was recorded in a minority of preclinical HCM/HOCM cats with 10% reaching 9-15 years. Conclusions and Clinical Importance: Preclinical HCM/HOCM is a global health problem of cats that carries substantial risk for CHF, ATE, and cardiovascular death. This finding underscores the need to identify therapies and monitoring strategies that decrease morbidity and mortality

    Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Get PDF
    BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons

    Recombinant Human Growth Hormone and Rosiglitazone for Abdominal Fat Accumulation in HIV- Infected Patients with Insulin Resistance: A Randomized, Double-Blind, Placebo-Controlled, Factorial Trial

    Get PDF
    Background: Recombinant human growth hormone (rhGH) reduces visceral adipose tissue (VAT) volume in HIV-infected patients but can worsen glucose homeostasis and lipoatrophy. We aimed to determine if adding rosiglitazone to rhGH would abrogate the adverse effects of rhGH on insulin sensitivity (SI) and subcutaneous adipose tissue (SAT) volume. Methodology/Principal Findings: Randomized, double-blind, placebo-controlled, multicenter trial using a 262 factorial design in which HIV-infected subjects with abdominal obesity and insulin resistance were randomized to rhGH 3 mg daily, rosiglitazone 4 mg twice daily, combination rhGH + rosiglitazone, or double placebo (control) for 12 weeks. The primary endpoint was change in SI by frequently sampled intravenous glucose tolerance test from entry to week 12. Body composition was assessed by whole body magnetic resonance imaging (MRI) and dual Xray absorptiometry (DEXA). Seventy-seven subjects were randomized of whom 72 initiated study drugs. Change in SI from entry to week 12 differed across the 4 arms by 1-way ANCOVA (P = 0.02); by pair-wise comparisons, only rhGH (decreasing SI; P = 0.03) differed significantly from control. Changes from entry to week 12 in fasting glucose and glucose area under the curve on 2- hour oral glucose tolerance test differed across arms (1-way ANCOVA P = 0.004), increasing in the rhGH arm relative to control. VAT decreased significantly in the rhGH arms (217.5% in rhGH/rosiglitazone and 222.7% in rhGH) but not in the rosiglitazone alone (22.5%) or control arms (21.9%). SAT did not change significantly in any arm. DEXA results were consistent with the MRI data. There was no significant rhGH x rosiglitazone interaction for any body composition parameter. Conclusions/Significance: The addition of rosiglitazone abrogated the adverse effects of rhGH on insulin sensitivity and glucose tolerance while not significantly modifying the lowering effect of rhGH on VAT

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation
    corecore